نانو لوله‌های کربنی و ABINIT

فَبِأَیِّ آلاءِ رَبِّکُما تُکَذِّبانِ

نانو لوله‌های کربنی و ABINIT

فَبِأَیِّ آلاءِ رَبِّکُما تُکَذِّبانِ

نانو لوله‌های کربنی و ABINIT

بسم الله الرحمن الرحیم

.•*..*•. .•*..*•. .•*..*•. .•*..*•. .•*..*•. .

نام نیکو گر بماند ز آدمی/ به کز او ماند سرای زرنگار

.•*..*•. .•*..*•. .•*..*•. .•*..*•. .•*..*•. .

نسیم مرادی، کارشناسی ارشد فیزیک اتمی مولکولی

علاقه مند به ساختار و خواص نانولوله های کربنی هستم
در این وبلاگ مطالبی که در مورد این ماده
مطالعه کرده م رو قرار می دم
برای نمایش فرمول ها بهتره از مرورگر IE استفاده نکنید
دوستان عزیز خوشحال میشم نظراتتون رو در مورد هر مطلب بدونم
ولی در سیستم بلاگ امکاناتی برای پاسخگویی به نظرات خصوصی نیست، ممنون میشم نظرات خصوصی ارسال نکنید.

اولین بار این وبلاگ رو فقط به این دلیل زدم
که مطالب پایان نامه م رو توش بریزم
شاید در فضای مجازی بدرد کسی بخوره ^_^

.•*..*•. .•*..*•. .•*..*•. .•*..*•. .•*..*•. .

پیشاپیش از نگاه شما سپاسگزارم.
کپی مطالب آزاد است.

در بخش قبل برای بررسی یک سیستم بس ذره ای نظریه تابعی چگالی را مطرح کردیم.

در ادامه ی مطالب قبل، هوهنبرگ و کوهن Hohenberg and Kohn نشان دادند، چگالی حالت زمینه می‌تواند جایگزین دو کمیت تعداد الکترون‌ها و پتانسیل خارجی ناشی از هسته‌های ساکن شود و به واسطه‌ی آن، همه‌ی خواص حالت پایه‌ی دستگاه می‌توانند از توزیع الکترون‌ها بدست آیند. از جمله مزایای روش‌هایی که در آن‌ها از چگالی الکترونی به جای تابع موج استفاده می‌شود این است که، اولا بر خلاف تابع موج، چگالی بار کمیتی قابل مشاهده است و صحت محاسبات را می‌توان در مقایسه با نتایج پراش ‎$ X $‎ و‎$ \ldots $‎ تایید یا رد کرد. ثانیا چگالی، تابع مکان و شامل ‎$ 3 $‎

مولفه است، در حالی که تابع موج دارای ‎$ 3N $‎ مولفه است، بنابر این محاسبات ساده ترند. 

در این روش‌ها انرژی کل سیستم را به صورت تابعی از چگالی الکترونی نوشته و با وردش‌گیری از آن مقدار کمینه انرژی کل دستگاه و انرژی حالت پایه را بدست می‌آورند.

هوهنبرگ و کوهن دو قضیه‌ی اساسی را در نظریه تابعی چگالی اثبات کردند.

اثبات یکتایی پتانسیل خارجی برای یک چگالی خاص مستلزم قضیه زیر است:

 

 پتانسیل یکتای خارجی ‎$ V_{ext}(\vec r) $‎ با چگالی الکترونی حالت زمینه ‎$ n(\vec r) $‎

با احتساب یک ثابت بدیهی جمع پذیر تعیین می‌شود در نتیجه یک رابطه یک به یک بین ‎$ V_{ext}(\vec r) $‎

و ‎$ n(\vec r) $‎ وجود دارد. ‎

 

انرژی کل حالت پایه دستگاه با در اختیار داشتن چگالی حالت پایه ‎$ n(\vec r) $‎

(با استفاده از تقریب بورن-اپنهایمر) به صورت زیر بیان می‌شود:

$$E[n] \equiv T[n]‎ + ‎{V_{ee}}[n]‎ + ‎\int {{V_{ext}}(\vec r)n(\vec r)d\vec r},*‎$$

 

 

● قضیه‌ی دوم، یک ابزار مناسب برای محاسبه‌ی انرژی کل حالت زمینه از رابطه‌ی *‎ می‌باشد.

 

این قضیه بیان می دارد، چگالی حالت پایه ‎$ n_0(r) $‎ کمینه‎‌ی ‎تابعی چگالی ای است که انرژی کل را می‌دهد (رابطه*)

 در واقع می‌توان با کمینه کردن این تابعی چگالی، انرژی کل و چگالی حالت پایه را بدست آورد.

بنابراین تابعی انرژی کل متناظر با یک پتانسیل خارجی، با در اختیار داشتن چگالی واقعی حالت پایه کمینه می‌شود.

$$‎{E_0} = E[{n_0}(r)] = \left\langle {{\psi _0}[{n_0}]} \right|H\left| {{\psi _0}[{n_0}]} \right\rangle \le \left\langle {{\psi _0}[n]} \right|H\left| {{\psi _0}[n]} \right\rangle‎. $$

پیامد این قضایا این است که می‌توان بدون استفاده از هر گونه تقریب، از چگالی که فقط به یک مختصه‌ی ‎$ (\vec r) $‎

وابسته است، به عنوان متغیر اساسی به جای تابع موج استفاده کرد. به علاوه اگر شکل صریح تابعی زیر:

$$‎F[n] \equiv T[\hat n]‎ + ‎{V_{ee}}[\hat n],‎$$

برای یک دستگاه یافت شود، چون ‎$ F[n] $‎ مستقل از ‎$ V_{ext} $‎ تعریف شده است، پس یک تابع جهانی

است که از یک دستگاه بس ذره‌ایِ مستقل به دستگاه بس ذره‌ای دیگر ناوردا است.

در نهایت می‌توان، تابعی انرژی کل را بصورت زیر نوشت:

$$‎E[n] = \int {drn(r){V_{ext}}(r)‎ + ‎F[n]}‎. $$

 

نظرات  (۴)

سلام اجی خوبی :)

پاسخ:
به به
ببین کی اومده
سلاااااااااااااام اقا حاجلو
خوبید؟خوشید؟
محمدرضا خوبه؟
ازین طرفا
خیلی خوشحالیدما^_^
سلام نسیم جان من منابعت رو میخواستم 
در زمینه نانو لوله کتاب باشه
ممنون میشم
پاسخ:
سلام
ی مقاله ریویو دارم خیلی خوبه
+ یک کتاب
باوشه می میلم.
خواهش می کنم آجی خوبیم خدا را شکر
شما چه خبر از دوستان چه خبر ؟
سارا خانم چه کار میکنه ؟
دچار دوگانگی شخصیت نشده :)
اردوها هم تعطیل شد دیگه :)
پاسخ:
خبر سلامتی
دوستان هم خوبن. بعضی هاشونو دیروز ملاقات کردیم
سارا هم خوبه
دوگانگی که هیچی دچار چند شخصیتی بودن نشه خوبه خخخ.
اردوها اخریش کاشانه
همین 5 شنبه و جمعه
نمیدونم سایت تعطیل شد اردوهای بعدی هم تعطیل بشه یا نه.
با اقای فرهنگیانه برنامه ش.
زنده باشی آجی
خوب به سلامتی خوبه باز ارتباط دارید باهاشون
کاشان میریدشما ؟:)
فکر کنم سایت هم داشتند مسلم اینا l
پاسخ:
سلامت باشید
نه ما ک نمیریم کاشان.
فک کنم تو سایت یا جای دیگه ای با هم در ارتباط باشن.

ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی